Skip to main content

Home/ OARS funding Math & Statistics/ Group items tagged quantum research

Rss Feed Group items tagged

MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    Quantum Leap Challenge Institutes are large-scale interdisciplinary research projects that aim to advance the frontiers of quantum information science and engineering. Research at these Institutes will span the focus areas of quantum computation, quantum communication, quantum simulation and/or quantum sensing. The institutes are expected to foster multidisciplinary approaches to specific scientific, technological, educational workforce development goals in these fields. Two types of awards will be supported under this program: (i) 12-month Conceptualization Grants (CGs) to support teams envisioning subsequent Institute proposals and (ii) 5-year Challenge Institute (CI) awards to establish and operate Quantum Leap Challenge Institutes. This activity is part of the Quantum Leap, one of the research Big Ideas promoted by the National Science Foundation (NSF). The NSF Quantum Leap Challenge Institutes program is consistent with the scope of NSF multidisciplinary centers for quantum research and education as described in the National Quantum Initiative Act[1]. In 2016, the NSF unveiled a set of "Big Ideas," ten bold, long-term research and process ideas that identify areas for future investment at the frontiers of science and engineering (seehttps://www.nsf.gov/news/special_reports/big_ideas/index.jsp). The Big Ideas represent unique opportunities to position our nation at the cutting edge of global science and engineering leadership by bringing together diverse disciplinary perspectives to support convergence research. Although proposals responding to this solicitation must be submitted tothe Office of Multidisciplinary Activities (OMA) in the Directorate of Mathematical and Physical Sciences (MPS),they will subsequently be managed by a cross-disciplinary team of NSF Program Directors.
MiamiOH OARS

NSF Quantum Computing & Information Science Faculty Fellows | NSF - National Science Fo... - 0 views

  •  
    In 2016, the National Science Foundation (NSF) unveiled a set of "Big Ideas," 10 bold, long-term research and process ideas that identify areas for future investment at the frontiers of science and engineering (see https://www.nsf.gov/news/special_reports/big_ideas/index.jsp). One of these ideas, "The Quantum Leap: Leading the Next Quantum Revolution," advances quantum technologies of the future: quantum computing, quantum communication, quantum simulations and quantum sensors. Recent advances in understanding and exploiting quantum mechanics are laying the foundation for generations of new discoveries that can benefit society in unforeseen ways. This "quantum revolution" requires a highly-trained workforce that can advance the envelope of what is possible, through research and development of practical solutions for quantum technologies. Academic faculty serve a vital role in the development of this workforce, by training the next generation of students while performing vital research.
MiamiOH OARS

Development of Quantum Algorithms - 0 views

  •  
    The U.S. Army Research Office (ARO) together with the National Security Agency (NSA) is soliciting proposals to develop new quantum computing algorithms for hard computational problems, develop insights into the power of quantum computation, and consider issues of quantum complexity and computability. Proposals for research in quantum algorithms should primarily be to devise novel quantum algorithms for solving mathematically and computationally hard problems from such diverse fields as algebra, number theory, geometry, analysis, optimization, graph theory, differential equations, combinatorics, topology, logic, and simulation. Quantum algorithms that are developed should focus on constructive solutions for specific tasks and on general methodologies for expressing and analyzing algorithms tailored to specific problems.
MiamiOH OARS

Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials... - 0 views

  •  
    The Division of Materials Research (DMR), the Division of Mathematical Sciences (DMS), the Division of Electrical, Communications and Cyber Systems (ECCS), and the Office of Advanced Cyberinfrastructure (OAC) seek to rapidly accelerate quantum materials design, synthesis, characterization, and translation of fundamental materials engineering and information research for quantum devices, systems, and networks. The new program of Enabling Quantum Leap: Convergent Accelerated Discovery Foundries for Quantum Materials Science, Engineering, and Information (Q-AMASE-i) aims to support these goals by establishing Foundries with mid-scale infrastructure for rapid prototyping and development of quantum materials and devices. The new materials, devices, tools and methods developed by Q-AMASE-i will be shared with the science and engineering communities through a Foundry-operated network. Technology transfer of Foundry activities will be enabled by close cooperation with industrial partners.
MiamiOH OARS

Ideas Lab: Practical Fully-Connected Quantum Computer Challenge (PFCQC) (nsf17548) | NS... - 0 views

  •  
    This solicitation describes an Ideas Lab focused on the Practical Fully-Connected Quantum Computer (PFCQC) challenge. Ideas Labs are intensive meetings that bring together multiple diverse perspectives to focus on finding innovative cross-disciplinary solutions to grand challenge problems. The ultimate aim of this Ideas Lab is to facilitate the development and operation of a practical-scale quantum computer. The aspiration is that bringing together researchers from diverse scientific backgrounds will engender fresh thinking and innovative approaches that will provide a fertile ground for new ideas on the design and fabrication of quantum devices and processors and implementation of quantum information processing algorithms. This will enable the solution of science problems that are currently beyond the reach of modern high-performance computing applications on classical computers. U.S. researchers may submit preliminary proposals for participation in the Ideas Lab only via FastLane. The goal is to form teams of domain scientists and engineers that will develop multidisciplinary ideas that eventually will be submitted as full proposals.
MiamiOH OARS

National Science Foundation Research Traineeship (NRT) Program (nsf21536) | NSF - Natio... - 0 views

  •  
    For FY2021, Artificial Intelligence (AI) and Quantum Information Science and Engineering (QISE) have been added to the national priority areas in which the NRT Program encourages proposals. We seek proposals on any interdisciplinary research theme of national priority, with special emphasis on AI and QISE and the six research areas within NSF's 10 Big Ideas. The NSF research Big Ideas are Harnessing the Data Revolution (HDR), The Future of Work at the Human-Technology Frontier (FW-HTF), Navigating the New Arctic (NNA), Windows on the Universe: The Era of Multi-Messenger Astrophysics (WoU), The Quantum Leap: Leading the Next Quantum Revolution (QL), and Understanding the Rules of Life: Predicting Phenotype (URoL). Proposals that align with one of these designated priority areas should contain a title to reflect that alignment, as described in the program solicitation (e.g., NRT-AI: title, NRT-HDR: title, NRT-QL: title). Proposals may be submitted under two tracks (i.e., Track 1 and Track 2). Track 1 proposals may request a total budget (up to five years in duration) up to $3 million for projects with a focus on STEM graduate students in research-based PhD and/or master's degree programs. Track 2 proposals may request a total budget (up to five years in duration) up to $2 million; NSF requires that Track 2 proposals focus on programs from institutions not classified as Doctoral Universities: Very High Research Activity (R1). Requirements for Track 1 and Track 2 are identical.
MiamiOH OARS

National Science Foundation Research Traineeship (NRT) Program (nsf19522) | NSF - Natio... - 0 views

  •  
    The NSF Research Traineeship (NRT) program is designed to encourage the development and implementation of bold, new, and potentially transformative models for science, technology, engineering and mathematics (STEM) graduate education training. The NRT program seeks proposals that explore ways for graduate students in research-based master's and doctoral degree programs to develop the skills, knowledge, and competencies needed to pursue a range of STEM careers. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas, through the use of a comprehensive traineeship model that is innovative, evidence-based, and aligned with changing workforce and research needs. Proposals are requested in any interdisciplinary or convergent research theme of national priority, with special emphasis on the research areas in NSF's 10 Big Ideas. The NSF research Big Ideas are Harnessing the Data Revolution (HDR), The Future of Work at the Human-Technology Frontier (FW-HTF), Navigating the New Arctic (NNA), Windows on the Universe: The Era of Multi-Messenger Astrophysics (WoU), The Quantum Leap: Leading the Next Quantum Revolution (QL), and Understanding the Rules of Life: Predicting Phenotype (URoL).
MiamiOH OARS

Emerging Frontiers in Research and Innovation 2017 (EFRI-2017) (nsf16612) | NSF - Natio... - 0 views

  •  
    The Emerging Frontiers in Research and Innovation (EFRI) program of the NSF Directorate for Engineering (ENG) serves a critical role in helping ENG focus on important emerging areas in a timely manner. This solicitation is a funding opportunity for interdisciplinary teams of researchers to embark on rapidly advancing frontiers of fundamental engineering research. For this solicitation, we will consider proposals that aim to investigate emerging frontiers in the following two research areas: -Advancing Communication Quantum Information Research in Engineering (ACQUIRE) -New Light, EM (Electronic) and Acoustic Wave Propagation: Breaking Reciprocity and Time-Reversal Symmetry (NewLAW) EFRI seeks proposals with transformative ideas that represent an opportunity for a significant shift in fundamental engineering knowledge with a strong potential for long term impact on national needs or a grand challenge.The proposals must also meet the detailed requirements delineated in this solicitation.
  •  
    The Emerging Frontiers in Research and Innovation (EFRI) program of the NSF Directorate for Engineering (ENG) serves a critical role in helping ENG focus on important emerging areas in a timely manner. This solicitation is a funding opportunity for interdisciplinary teams of researchers to embark on rapidly advancing frontiers of fundamental engineering research. For this solicitation, we will consider proposals that aim to investigate emerging frontiers in the following two research areas: -Advancing Communication Quantum Information Research in Engineering (ACQUIRE) -New Light, EM (Electronic) and Acoustic Wave Propagation: Breaking Reciprocity and Time-Reversal Symmetry (NewLAW) EFRI seeks proposals with transformative ideas that represent an opportunity for a significant shift in fundamental engineering knowledge with a strong potential for long term impact on national needs or a grand challenge.The proposals must also meet the detailed requirements delineated in this solicitation.
MiamiOH OARS

nsf.gov - Funding - CISE-MPS Interdisciplinary Faculty Program in Quantum Information S... - 0 views

  •  
    The CISE-MPS Interdisciplinary Faculty Program in Quantum Information Science is designed to promote research in the area of Quantum Information Science (QIS) by providing resources to allow QIS researchers and researchers from the CISE or MPS disciplines to actively engage in joint research efforts, addressing problems at the interface between the mathematical and physical sciences and computer and information sciences through long-term visits by faculty to a host institution. 
MiamiOH OARS

CISE-MPS Interdisciplinary Faculty Program in Quantum Information Science (nsf15512) - 0 views

  •  
    The CISE-MPS Interdisciplinary Faculty Program in Quantum Information Science is designed to promote research in the area of Quantum Information Science (QIS) by providing resources to allow QIS researchers and researchers from the CISE or MPS disciplines to actively engage in joint research efforts, addressing problems at the interface between the mathematical and physical sciences and computer and information sciences through long-term visits to a host institution.
MiamiOH OARS

nsf.gov - Funding - Analysis - US National Science Foundation (NSF) - 0 views

  •  
    The Analysis Program supports basic research in that area of mathematics whose roots can be traced to the calculus of Newton and Leibniz.  Given its centuries-old ties to physics, analysis has influenced developments from Newton's mechanics to quantum mechanics and from Fourier's study of heat conduction to Maxwell's equations of electromagnetism to Witten's theory of supersymmetry.  More generally, research supported by Analysis provides the theoretical underpinning for the majority of applications of the mathematical sciences to other scientific disciplines.  Current areas of significant activity include: nonlinear partial differential equations; dynamical systems and ergodic theory; real, complex and harmonic analysis; operator theory and algebras of operators on Hilbert space; mathematical physics; and representation theory of Lie groups/algebras.  Emerging areas include random matrix theory and its ties to classical analysis, number theory, quantum mechanics, and coding theory; and development of noncommutative geometry with its applications to modeling physical phenomena.  It should be stressed, however, that the underlying role of the Analysis Program is to provide support for research in mathematics at the most fundamental level.  Although this is often done with the expectation that the research will generate a payoff in applications at some point down the road, the principal mission of the Program is to tend and replenish an important reservoir of mathematical knowledge, maintaining it as a dependable resource to be drawn upon by engineers, life and physical scientists, and other mathematical scientists, as need arises.
MiamiOH OARS

Analysis - 0 views

  •  
    The Analysis Program supports basic research in that area of mathematics whose roots can be traced to the calculus of Newton and Leibniz. Given its centuries-old ties to physics, analysis has influenced developments from Newton's mechanics to quantum mechanics and from Fourier's study of heat conduction to Maxwell's equations of electromagnetism to Witten's theory of supersymmetry. More generally, research supported by Analysis provides the theoretical underpinning for the majority of applications of the mathematical sciences to other scientific disciplines. Current areas of significant activity include: nonlinear partial differential equations; dynamical systems and ergodic theory; real, complex and harmonic analysis; operator theory and algebras of operators on Hilbert space; mathematical physics; and representation theory of Lie groups/algebras. Emerging areas include random matrix theory and its ties to classical analysis, number theory, quantum mechanics, and coding theory; and development of noncommutative geometry with its applications to modeling physical phenomena. It should be stressed, however, that the underlying role of the Analysis Program is to provide support for research in mathematics at the most fundamental level. Although this is often done with the expectation that the research will generate a payoff in applications at some point down the road, the principal mission of the Program is to tend and replenish an important reservoir of mathematical knowledge, maintaining it as a dependable resource to be drawn upon by engineers, life and physical scientists, and other mathematical scientists, as need arises.ConferencesPrincipal Investigators should carefully read the program solicitation "Conferences and Workshops in the Mathematical Sciences" (link below) to obtain important information regarding the substance of "conference proposals" (i.e., proposals for conferences, workshops, summer/winter schools, and similar activities). For Analysis c
MiamiOH OARS

EMERGING FRONTIERS IN RESEARCH AND INNOVATION 2017 (EFRI-2017) (nsf16612) | NSF - Natio... - 0 views

  •  
    The Emerging Frontiers in Research and Innovation (EFRI) program of the NSF Directorate for Engineering (ENG) serves a critical role in helping ENG focus on important emerging areas in a timely manner. This solicitation is a funding opportunity for interdisciplinary teams of researchers to embark on rapidly advancing frontiers of fundamental engineering research. For this solicitation, we will consider proposals that aim to investigate emerging frontiers in the following two research areas: -Advancing Communication Quantum Information Research in Engineering (ACQUIRE) -New Light, EM (Electronic) and Acoustic Wave Propagation: Breaking Reciprocity and Time-Reversal Symmetry (NewLAW)
MiamiOH OARS

nsf.gov - Funding - Condensed Matter and Materials Theory - US National Science Foundat... - 0 views

  •  
    This program supports theoretical and computational materials research and education in the topical areas represented in DMR programs, including condensed matter physics, polymers, solid-state and materials chemistry, metals and nanostructures, electronic and photonic materials, ceramics, and biomaterials. The program supports fundamental research that advances conceptual, analytical, and computational techniques for materials research. A broad spectrum of research is supported using electronic structure methods, many-body theory, statistical mechanics, and Monte Carlo and molecular dynamics simulations, along with other techniques, many involving advanced scientific computing. Emphasis is on approaches that begin at the smallest appropriate length scale, such as electronic, atomic, molecular, nano-, micro-, and mesoscale, required to yield fundamental insight into material properties, processes, and behavior and to reveal new materials phenomena. Areas of recent interest include, but are not limited to: strongly correlated electron systems; low-dimensional systems; nonequilibrium phenomena, including pattern formation, microstructural evolution, and fracture; high-temperature superconductivity; nanostructured materials and mesoscale phenomena; quantum coherence and its control; and soft condensed matter, including systems of biological interest.
MiamiOH OARS

SOARING Round 5 | Ohio Federal Research Network - 0 views

  •  
    The OFRN Round 5 Sustaining Ohio's Aeronautical Readiness and Innovation in the Next Generation (SOARING) Opportunity Announcement is focused on expanding Ohio's research and development capabilities across the state's academic institutions and business in support of Ohio-based federal partner needs, which ultimately promotes Ohio's economic growth.  OFRN Round 5 Areas of Interest (AOIs) include topics in Unmanned Aerial Systems (UAS), Artificial Intelligence, Human Factors, Data Analytics, Space Commercialization, Quantum Communications and Advanced Power Systems.  This announcement seeks to leverage Ohio's unique research capabilities and its federal partner's expertise to accelerate technology development and innovation by increasing collaboration across government, academic, and industry organizations. 
1 - 15 of 15
Showing 20 items per page